Jets and Outflows: From Star to Cloud

A. Frank, S. Cabrit, T.P. Ray, H.G. Arce,
F. Bacciotti, J. Bally, M. Benisty, J.
Eisloeffel, M. Güdel, P. Hartigan, S.
Lebedev, B. Nisini & A. Raga

U. Rochester, Obs Paris, DIAS, Yale U., INAF, U. Colorado, IPAG, Thuringer L., U. Vienna, Rice U., IC London, UNAM

Where do we see jets ?

Class 0 Protostars

Evolved Class 1 Protostars

Class 2 Disk only

➤ Universal across evolutionary stages Accretion-powered Mjet/Macc ≈ 0.1 (Edwards+2006, Antoniucci+2008)

>Universal in M*: from 24 Mjup to 10 M/ Vjet ≈ 100-800 km/s

Why Do Jets Matter ?

 Invoked to solve several major issues in SF:
 Low SFE and SFR in turbulent clouds *Cf. chapters by Padoan, Krumholz...* 30% Core to Star efficiency *cf. chapters by Offner, Padoan...* Removal of star/disk angular momentum *cf. chapters by Li, Bouvier, Turner*

□ Also:

 May affect planet formation and photoevaporation cf. chapters by Dutrey, Pontoppidan, Alexander, Gail...
 Unique info on source binarity, variability, axis precession cf. chapters by Reipurth, Audard...

Remarkable progress since PPV

First observational access to

- New spatial ranges <50 AU to >10pc
- New λ ranges (Xrays, IR, submm)
- Detailed proper motions over > 10 yr

Large-scale collaboration networks

- JETSET (2005-2008) EU (11 institutes)
- JETPAC (2008-current) USA-UK (5 institutes)

Combining observations, MHD simulations & theory, and high-energy density lab experiments (HEDLA)

Small Scales: 0.1-100 AU

Jet angular momentum and launch process

Jet Collimation

- Same width and collimation scale in class 0 as class 2 jets ! (Cabrit et al 2007)
 - Not hydro collimation by envelope
- Need disk B field for jet collimation !
 - MHD disk wind is most efficient collimator.

Jet rotation

Class 2: DG Tau with HST (Bacciotti+2002, Coffey+2007)

¹²CO(2-1) ¹²CO(2-1) Obs Model 8 5 5 v_{mean} [km∕s] ____0 ∆y [arcsec] Ô 0 010 0 $^{-5}$ -5 -5 5 5 0 0 -5 ∆x [arcsec] ∆x [arcsec] Class 1: CB 26 in CO with PdBI

(Launhardt et al 2009)

Massive Class 0: Source I SiO maser VLBA (Matthews et al 2010, Vaidya etal 2013)

Stationary MHD disk winds predict (Anderson+03. Ferreira+06)

$$2rV_{\phi}\Omega_0 = V_p^2 + 3\Omega_0^2 r_0^2$$

→ suggests r0 \approx 0.1 - 5 AU for all candidates so far

Feedback on disk structure in the region of formation of terrestrial planets

Questioning Jet Rotation

- Puzzling observations (RW Aur, HH212...)
 - Opposite rotation sense of Disk / Jet or Jet / Counterjet
 - Variability in a few years

(Cabrit et al 2006, Codella et al 2007) (Coffey et al 2012, Davis etal 2001)

- Proposed interpretations
 - Shocks in MHD disk wind (Fendt 2011, Sauty 12)
 - Jet precession, orbital motion, asymmetric environment (Cerqueira etal 2006, Lee et al 2010, Soker et al 2005, Correia 2009)
 - Beam dilution of jet rotation signatures ? (Pesenti et al 2004)

Pesenti et al. 2004, A&A

To be continued ...

Resolving Central Engine in Bry

- Interferometric sizes
 0.1 AU < R(Bry) < 2µm continuum
- Spectrally resolved interferometry
 Bipolar jet in outbursting Herbig Be Benisty et al. 2010, A&A 517, L3
- Fitting of flux, visibility, and phase in Herbig Be MWC297
 - rotating MHD disk wind favored over polar stellar wind
 - Launch zone 0.5 1 AU

See also Malbet+2007; Rousselet-Perraut+2010 for Hα in AB Aur

+350 km/s V (North -->) (mas) Ο -350 km/s AU Benisty et al. 2010, A&A 517, L3 Disk wind ejecting region $\sim 0.5 - 1$ AU ($\sim 17.5 - 35$ R_a) Inner continuum disk

Br_y only

X-Ray Jets

DG Tau 30 AU Güdel+ in prep

From 30 AU to pc scales

- \Box T_x implies Vs ~ 500 km/s >> optical lines
- Tenuous fast stellar wind?
- Innermost structures seem stationary
 - Collimation shock ? Magnetic heating? (See poster by Schneider et al.) Impact on disk irradiation

DG Tau 1200 AU Güdel+ 2008 A&A,478,797

HH 80

2.5 pc

Magnetic Tower (HEDLA)

- Magnetic Driven Cavity
- Axial Jet: hoop stress
- Cavity confined by ambient medium
- Kink unstable: fast collimated clumps

Lebedev et al, MNRAS (2005), Ciardi et al, ApJL (2009), Suzuki-Vidal et al, PoP (2010, 2012)

Impact on Planet Formation

Disk irradiation

- X-rays/UV from collimation shock
- Shielding by (dusty) disk wind

MHD disk winds from 0.1-10 AU

- radial transport at sonic speed
- Lifting and melting of solids
- Planet migration ? (eg. Terquem 2006)

Intermediate scales 100 AU – 1 pc

Visser et al 2012, A&A

Core to star efficiency

- 3D MHD collapse simulations
 - Mstar ≈ 50% Mtot for B-Ω angle up to 50°
 - Protostellar MHD ejections determine final stellar mass?
 - Outflow base broadens in time
 - See also Offner+2011

Ciardi & Hennebelle 2010, MNRAS

Outflow-Envelope Interactions: widening of outflow cavity with time

envelope left

Wide-angle component(s)

- Invoked for CO cavity expansion (cf. Arce et al 2007, PPV)
- Must be slower than jet
 - Highly curved bowshocks
 - Velocity decrease at jet edges
 - (Bacciotti+2000, Coffey+2008, Agra-Amboage +2011)
 - Not a « classical » X-wind
- Possible origins
 - Slower disk wind ?
 - Outflow from 1st core phase ?

Multiple jet components

- Spitzer & Herchel: Jets often have both atomic & molecular components
- with range of V and T
 - Shocks
 - range of launch radii?
- Need to revisit mass fluxes

 Outflow power vs Lacc !
 Takami+2004,2007, Beck +2008, Garcia-Lopez+2008, Davis+2011,Giannini +2011,Nisini+2013...

Chemical diagnostics of R_{launch}

Rlaunch > Rsub Fe, Si, Ca depletion at small z,V

(Podio+2006,2011, Agra-Amboage +2011, poster by Giannini et al.)

- Chemical models of dusty MHD disk winds (Panoglou et al 2012)
 - Molecules can survive !
 - Reproduce Herschel H₂O broad component in Class 0

Next step: CO with ALMA, H₂ with AO

Models: Yvart et al. 2013 Data: Kristensen et al. 2012

Jet variability record

Knots & Bows = internal shocks

 Velocity and/or angle variations. not pure Mdot var

Angle variations:

- S-shaped precession 3000-50,000 yrs
- Orbital motion: HH211, P=43yrs; HH111, P=1800 yrs Lee+2010, Noriega-Crespo+2011
 - constrain binary mass and separation

Velocity Variability

 3 preferred time scales
 ≈3-10yrs, ≈100yrs, ≈1000 yrs
 ΔV of 20-140 km/s
 Raga+2002,2011; Hartigan+2007; Agra-Amboage+2011...

May probe

- Stellar magnetic cycles
- perturbations by companion
- link with EX Or / FU Or outbursts ? (cf. Audard etal. Chapter)

HH1: Clumps & Cloud Entrainment

HH37: Clumps & Mach Stems

MHD Jet Synthetic Observations

Non-equilibrium ionization AMR resolves cooling zone Hα & [SII] maps (Hansen et al13)

HEDLA Studies: Mach Stems

- Bright HH34 bright spots (Hartigan et al 14)
 Clumps?
 - Shock intersections (Mach stems)?

Cluster/Cloud Scales > 1 pc

Outflow feeback

Outflow Feedback

Simulations: Outflow feedback needed?
 Sustain turbulence
 Reduce SFE
 Reduce stellar masses

Focus on processes observational connections

(see also: Li et al 10, Krumholtz et al 12)

Hansen et al.12

Giant Outflows

1 рс 0.1Myr at 100 km/s = 10pcO IRS How much jet momentum CO(1-0) from Bally et al. (1996) stays in cluster ? In CO(2-1) map from Yu et al. (1999) cloud ?

Example: B5 – IRS1 Molecular Outflow

CO (1-0) map from Arce et al. (2010)

Importance of Fossil Cavities

- Momentum rate balance is what counts
- Perseus: Outflow momentum rate 40% – 80% turbulence diss. rate
- Large contribution in low V fossil shells
 Quillen (05), Arce (10,11)
- (see also: Nakmura et al 11, Aspen 03, Graves et al 10)

Outflows/Cloud Coupling

t = 1500 yr

Precession + Pulsing: Raga et al 09

Outflows Re-energize Turbulence Cunningham et al 09

Prompt Entrainment (Shocks)

 Jet precession/Binary/ wandering; periodicity/ clumpiness

Randomize bulk flow

- Interaction with existing turbulent flow
- 2. interaction of multiple fossil shells.

Outflow Driven Turbulence

 Interaction of multiple fossil shells different from "Fourier" driving
 Knee in spectra
 Steeper power spectrum

$$E(k) \propto k^{-3}$$

Carroll et al 09, 10 Nakamura & Li 07, 11

Energy spectra from 3 feedback simulations (Carrol et al 2010)

Observation vs. Theory

No evidence for small scale injection?

- Principle Component Analysis
 - Brunt et al. 09
- Power Spectra (VCS method):
 - Padoan et al. 09
- PCA: Can't pick up outflow driving scale!!! (Carrol et al 2010)

VCS Power Spectrum

- Optical depth (?)
- Multiple Interaction scales (?) (Arce 2010)

NGC 1333 Padoan et al

Wide winds and Outbursts

- Feedback: Cloud scales (!)
- Orion BN/KL outburst
 - E ~ 10⁴⁷ erg
 - Triple star dynamical interaction
 - (Bally et al 2011)

Conclusions

- Jets and outflows not only beautiful and dynamic; fundamental to understand star formation (SFE, IMF, turbulence)
- Jets could also impact planet formation through disk irradiation/shielding and MHD effects
- Multiple components: stellar winds / magnetospheric /disk winds seem present : need detailed analysis and modeling
- Laboratory Astrophysics (HEDLA) is new powerful tool to study and model RMHD jets

The next step

- ALMA + nIR IFUs : crucial to resolve jet rotation profile, shocks, chemical stratification in statistical jet sample
- nIR interferometry of CTTS (eg PIONEER): powerful test of atomic jet models
- Synchrotron with eVLA, LOFAR: jet Bfield
- Monitoring of shortest quasi-period ≈3-15yr to clarify origin
- Identify observational diagnostics of outflow-driven turbulence
- Broaden Laboratory Astrophysics to other flows (eg. cometary globules, hot Jupiters)

Carrasco-Gonzalez et al 2010, Science **330**, 1209

Jet magnetic field

- Synchrotron linear polarisation:
 - B aligned with jet in HH80-81
- Synchrotron knot in DG Tau (see poster by Ainsworth et al.)
 - More to come with eVLA, LOFAR

Carrasco-Gonzalez et al 2010, Science **330**, 1209 (2010)

Multi-Epoch HST HH Jet Studies

Main Results (Hartigan et al 11, Bally)

- Deflection shocks, Cavities, entrainment
 Clumps!
- Intersecting shocks, Mach Disks, sheets

1994.6

Episodic Ejections

Additional collimation by trapped magnetic fields

(Ciardi et al 09, Lebdev et al 10)